(********************************************************************) (* *) (* bin32.s7i 32-bit binary value support library *) (* Copyright (C) 2013 - 2024 Thomas Mertes *) (* *) (* This file is part of the Seed7 Runtime Library. *) (* *) (* The Seed7 Runtime Library is free software; you can *) (* redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation; either version 2.1 of the License, or (at your *) (* option) any later version. *) (* *) (* The Seed7 Runtime Library is distributed in the hope that it *) (* will be useful, but WITHOUT ANY WARRANTY; without even the *) (* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR *) (* PURPOSE. See the GNU Lesser General Public License for more *) (* details. *) (* *) (* You should have received a copy of the GNU Lesser General *) (* Public License along with this program; if not, write to the *) (* Free Software Foundation, Inc., 51 Franklin Street, *) (* Fifth Floor, Boston, MA 02110-1301, USA. *) (* *) (********************************************************************) include "float.s7i"; (** * Binary values with 32 bits. * This type supports bitwise operations but no integer arithmetic. * The internal representation is the same as for integer. *) const type: bin32 is subtype object; const proc: destroy (ref bin32: aValue) is action "GEN_DESTR"; const proc: (ref bin32: dest) ::= (ref bin32: source) is action "INT_CREATE"; IN_PARAM_IS_VALUE(bin32); const proc: (inout bin32: dest) := (in bin32: source) is action "INT_CPY"; (** * Convert to bin32. * @return the unchanged value as bin32. *) const func bin32: bin32 (in integer: number) is action "INT_ICONV1"; (** * Default value of ''bin32'' (bin32(0)). *) const bin32: (attr bin32) . value is bin32(0); (** * Convert to bin32. * @return the unchanged value as bin32. *) const func bin32: bin32 (in char: ch) is return bin32(ord(ch)); (** * Get bits in IEEE 754 single-precision representation from a float. * IEEE 754 is a standard for floating point arithmetic. * The single-precision format of IEEE 754 has a sign bit, an 8 bit * exponent, and a 23 bit mantissa. * bin32(1.0) returns bin32(16#3f800000) * @param number Float value to be converted to bin32. * @return 32 bits in IEEE 754 single-precision float representation. *) const func bin32: bin32 (in float: number) is action "FLT_SINGLE2BITS"; (** * Convert to integer. * @return the unchanged value as integer. *) const func integer: (attr integer) conv (in bin32: bits) is action "INT_ICONV3"; (** * Convert to bin32. * @return the unchanged value as bin32. *) const func bin32: (attr bin32) conv (in integer: anInt) is action "INT_ICONV3"; (** * Convert to integer. * @return the unchanged value as integer. *) const func integer: ord (in bin32: bits) is action "INT_ICONV1"; (** * Convert to integer. * @return the unchanged value as integer. *) const func integer: integer (in bin32: bits) is action "INT_ICONV1"; (** * Get a float from bits in IEEE 754 single-precision representation. * IEEE 754 is a standard for floating point arithmetic. * The single-precision format of IEEE 754 has a sign bit, an 8 bit * exponent, and a 23 bit mantissa. * float(bin32(16#3f800000)) returns 1.0 * @param bits Bits to be converted to a float. * @return a float from bits in single-precision float representation. *) const func float: float (in bin32: bits) is action "FLT_BITS2SINGLE"; (** * Compare two bin32 values. * @return -1, 0 or 1 if the first argument is considered to be * respectively less than, equal to, or greater than the * second. *) const func integer: compare (in bin32: bits1, in bin32: bits2) is action "BIN_CMP"; (** * Compute the hash value of a bin32 value. * @return the hash value. *) const func integer: hashCode (in bin32: bits) is action "INT_HASHCODE"; (** * Compute pseudo-random bin32 value. * The random values are uniform distributed. * @return a random bin32 value. *) const func bin32: rand (attr bin32) is return bin32(rand(0, 4294967295)); (** * Number of bits in the minimum binary representation. * Leading zero bits are not part of the minimum binary representation. * bitLength(bin32(0)) returns 0 * bitLength(bin32(1)) returns 1 * bitLength(bin32(4)) returns 3 * @return the number of bits. *) const func integer: bitLength (in bin32: bits) is action "BIN_BIT_LENGTH"; (** * Number of lowest-order zero bits in the binary representation. * This is equal to the index of the lowest-order one bit (indices start with 0). * If there are only zero bits (''bits'' is bin32(0)) the result is -1. * lowestSetBit(bin32(0)) returns -1 * lowestSetBit(bin32(1)) returns 0 * lowestSetBit(bin32(4)) returns 2 * @return the number of lowest-order zero bits or -1 for lowestSetBit(bin32(0)). *) const func integer: lowestSetBit (in bin32: bits) is action "BIN_LOWEST_SET_BIT"; (** * Convert an ''bin32'' value to a [[string]]. * The values is converted to a string with decimal representation. * @return the string result of the conversion. * @exception MEMORY_ERROR Not enough memory to represent the result. *) const func string: str (in bin32: bits) is action "BIN_STR"; (** * Convert a ''bin32'' value to a [[string]] using a radix. * The conversion uses the numeral system with the given ''base''. * Digit values from 10 upward are encoded with lower case letters. * E.g.: 10 is encoded with a, 11 with b, etc. * bin32(48879) radix 16 returns "beef" * @return the string result of the conversion. * @exception RANGE_ERROR If base < 2 or base > 36 holds. * @exception MEMORY_ERROR Not enough memory to represent the result. *) const func string: (in bin32: bits) radix (in integer: base) is action "BIN_radix"; (** * Convert a ''bin32'' value to a [[string]] using a radix. * The conversion uses the numeral system with the given ''base''. * Digit values from 10 upward are encoded with upper case letters. * E.g.: 10 is encoded with A, 11 with B, etc. * bin64(48879) RADIX 16 returns "BEEF" * @return the string result of the conversion. * @exception RANGE_ERROR If base < 2 or base > 36 holds. * @exception MEMORY_ERROR Not enough memory to represent the result. *) const func string: (in bin32: bits) RADIX (in integer: base) is action "BIN_RADIX"; (** * Convert a ''bin32'' into a [[string]] of bytes with big-endian encoding. * The result uses binary representation with a base of 256. * The result contains chars (bytes) with an ordinal <= 255. * bytes(bin32(1413829460), BE, 5) returns "\0;TEST" * bytes(bin32(1413829460), BE, 4) returns "TEST" * bytes(bin32(1413829460), BE, 3) raises RANGE_ERROR * @param bits Bin32 to be converted. * @param length Determines the length of the result string. * @return a string of ''length'' bytes with the unsigned binary * representation of ''bits''. * @exception RANGE_ERROR If ''length'' is negative or zero, or * if the result would not fit in ''length'' bytes. * @exception MEMORY_ERROR Not enough memory to represent the result. *) const func string: bytes (in bin32: bits, BE, in integer: length) is action "BIN_N_BYTES_BE"; (** * Convert a ''bin32'' into a [[string]] of bytes with little-endian encoding. * The result uses binary representation with a base of 256. * The result contains chars (bytes) with an ordinal <= 255. * bytes(bin32(1413829460), LE, 5) returns "TEST\0;" * bytes(bin32(1413829460), LE, 4) returns "TEST" * bytes(bin32(1413829460), LE, 3) raises RANGE_ERROR * @param bits Bin32 to be converted. * @param length Determines the length of the result string. * @return a string of ''length'' bytes with the unsigned binary * representation of ''bits''. * @exception RANGE_ERROR If ''length'' is negative or zero, or * if the result would not fit in ''length'' bytes. * @exception MEMORY_ERROR Not enough memory to represent the result. *) const func string: bytes (in bin32: bits, LE, in integer: length) is action "BIN_N_BYTES_LE"; (** * Check if two bin32 values are equal. * @return TRUE if the two values are equal, * FALSE otherwise. *) const func boolean: (in bin32: bits1) = (in bin32: bits2) is action "INT_EQ"; (** * Check if two bin32 values are not equal. * @return FALSE if both values are equal, * TRUE otherwise. *) const func boolean: (in bin32: bits1) <> (in bin32: bits2) is action "INT_NE"; (** * Compute a bitwise ''and'' of two bin32 values. * bin32(2#1100) & bin32(2#1010) returns bin32(2#1000) * @return the bitwise ''and'' of the two values. *) const func bin32: (in bin32: bits1) & (in bin32: bits2) is action "BIN_AND"; (** * Compute a bitwise inclusive ''or'' of two bin32 values. * bin32(2#1100) | bin32(2#1010) returns bin32(2#1110) * @return the bitwise inclusive ''or'' of the two values. *) const func bin32: (in bin32: bits1) | (in bin32: bits2) is action "BIN_OR"; (** * Compute a bitwise exclusive or (''xor'') of two bin32 values. * bin32(2#1100) >< bin32(2#1010) returns bin32(2#0110) * @return the bitwise ''xor'' of the two values. *) const func bin32: (in bin32: bits1) >< (in bin32: bits2) is action "BIN_XOR"; (** * Compute a bitwise ''not'' of a bin32 value. * ~bin32(2#1) returns bin32(16#fffffffe) * @return the bitwise ''not'' of the value. *) const func bin32: ~ (in bin32: bits) is return bits >< bin32(16#ffffffff); (** * Compute ''bits'' logically left shifted by ''lshift''. * bin32(16#abcdef) << 4 returns bin32(16#abcdef0) * bin32(1) << 64 raises OVERFLOW_ERROR * @return the left shifted value. * @exception OVERFLOW_ERROR If the shift amount is * negative or greater equal 64. *) const func bin32: (in bin32: bits) << (in integer: lshift) is action "BIN_LSHIFT"; (** * Compute ''bits'' logically right shifted by ''rshift''. * Bits shifted beyond the lowest bit position are lost. * bin32(16#abcdef) >> 4 returns bin32(16#abcde) * @return the right shifted value. * @exception OVERFLOW_ERROR If the shift amount is * negative or greater equal 64. *) const func bin32: (in bin32: bits) >> (in integer: rshift) is action "BIN_RSHIFT"; (** * Logical left shift ''bits'' by ''lshift'' and assign the result back to ''bits''. * @exception OVERFLOW_ERROR If the shift amount is * negative or greater equal 64. *) const proc: (inout bin32: bits) <<:= (in integer: lshift) is action "BIN_LSHIFT_ASSIGN"; (** * Logical right shift ''bits'' by ''rshift'' and assign the result back to ''bits''. * Bits shifted beyond the lowest bit position are lost. * @exception OVERFLOW_ERROR If the shift amount is * negative or greater equal 64. *) const proc: (inout bin32: bits) >>:= (in integer: rshift) is action "BIN_RSHIFT_ASSIGN"; (** * Compute a bitwise ''and'' and assign the result back to ''bits1''. *) const proc: (inout bin32: bits1) &:= (in bin32: bits2) is action "BIN_AND_ASSIGN"; (** * Compute a bitwise inclusive ''or'' and assign the result back to ''bits1''. *) const proc: (inout bin32: bits1) |:= (in bin32: bits2) is action "BIN_OR_ASSIGN"; (** * Compute a bitwise exclusive or (''xor'') and assign the result back to ''bits1''. *) const proc: (inout bin32: bits1) ><:= (in bin32: bits2) is action "BIN_XOR_ASSIGN"; (** * Rotate the bits of a bin32 value left by shiftCount bits. * The vacant bit positions at the right side are filled in with * the bits that are shifted out at the left side. * rotLeft(bin32(16#12345678), 8) returns bin32(16#34567812) * @return the left rotated value. * @exception OVERFLOW_ERROR If the shift amount is negative * or greater than 32. *) const func bin32: rotLeft (in bin32: x, in integer: shiftCount) is return (x << shiftCount | x >> (32 - shiftCount)) & bin32(16#ffffffff); (** * Rotate the bits of a bin32 value right by shiftCount bits. * The vacant bit positions at the left side are filled in with * the bits that are shifted out at the right side. * rotRight(bin32(16#12345678), 8) returns bin32(16#78123456) * @return the right rotated value. * @exception OVERFLOW_ERROR If the shift amount is negative * or greater than 32. *) const func bin32: rotRight (in bin32: x, in integer: shiftCount) is return (x >> shiftCount | x << (32 - shiftCount)) & bin32(16#ffffffff); (** * Get bits in MBF single-precision representation from a float. * Microsoft Binary Format (MBF) is a format for floating point numbers. * The single-precision version of MBF has a 8 bit exponent, a sign bit * and a 23 bit mantissa. * float2MbfBits(1.0, SINGLE) returns bin32(16#81000000) * @param number Float value to be converted to bin32. * @return 32 bits in MBF single-precision float representation. * @exception RANGE_ERROR If number is not representable in MBF. * NaN, Infinity and -Infinity are not representable * in MBF. Numbers with an absolute value larger than * 1.7014117331926443e+38 are also not representable * in MBF. *) const func bin32: float2MbfBits (in float: number, SINGLE) is func result var bin32: bits is bin32(0); local const integer: exponentBits is 8; const integer: mantissaBits is 23; const bin32: ieeeSignMask is bin32(1) << (exponentBits + mantissaBits); const bin32: mantissaMask is bin32(pred(1 << mantissaBits)); const integer: maxExponent is pred(2 ** exponentBits); const integer: mbfExponentBias is 129; var floatElements: ieeeElements is floatElements.value; var bin32: fractionBits is bin32(0); var integer: mbfExponent is 0; begin if isNaN(number) or abs(number) = Infinity then raise RANGE_ERROR; elsif number <> 0.0 then ieeeElements := decompose(number); fractionBits := bin32(ieeeElements.fraction); if abs(float(fractionBits)) = 1.0 then # Because of the rounding to single the fraction could be 1.0. incr(ieeeElements.exponent); # Interpret the mantissa as 0.5. end if; mbfExponent := ieeeElements.exponent - 1 + mbfExponentBias; if mbfExponent > maxExponent then raise RANGE_ERROR; elsif mbfExponent > 0 then bits := (bin32(mbfExponent) << succ(mantissaBits)) | ((fractionBits & ieeeSignMask) >> exponentBits) | fractionBits & mantissaMask; end if; end if; end func; (** * Get a float from bits in MBF single-precision representation. * Microsoft Binary Format (MBF) is a format for floating point numbers. * The single-precision version of MBF has a 8 bit exponent, a sign bit * and a 23 bit mantissa. * mbfBits2Float(bin32(16#81000000)) returns 1.0 * @param bits Bits to be converted to a float. * @return a float from bits in MBF single-precision float representation. *) const func float: mbfBits2Float (in bin32: bits) is func result var float: aFloat is 0.0; local const integer: mantissaBits is 23; const bin32: mantissaMask is bin32(pred(1 << mantissaBits)); const bin32: mantissaSign is bin32(1 << mantissaBits); const integer: exponentBias is 129; var integer: exponent is 0; begin exponent := ord(bits >> succ(mantissaBits)); if exponent <> 0 then # Ignore sign bit and set implicit leading one bit of mantissa instead. aFloat := flt(ord(mantissaSign | bits & mantissaMask)); # Check sign bit. if ord(bits & mantissaSign) <> 0 then aFloat := -aFloat; end if; aFloat := aFloat * 2.0 ** (exponent - exponentBias - mantissaBits); end if; end func; (** * Convert a string of four little-endian bytes to a bin32 value. * @return the bin32 value. *) const func bin32: bin32 (in string: fourBytes, LE) is return bin32(fourBytes[1]) | bin32(fourBytes[2]) << 8 | bin32(fourBytes[3]) << 16 | bin32(fourBytes[4]) << 24; (** * Convert a string of four big-endian bytes to a bin32 value. * @return the bin32 value. *) const func bin32: bin32 (in string: fourBytes, BE) is return bin32(fourBytes[1]) << 24 | bin32(fourBytes[2]) << 16 | bin32(fourBytes[3]) << 8 | bin32(fourBytes[4]); # Allows 'array bin32' everywhere without extra type definition. const type: _bin32Array is array bin32; enable_output(bin32); CASE_DECLS(bin32); DECLARE_TERNARY(bin32);